#
客服热线:0311-85395669
资讯电话:
139-32128-146
152-30111-569
客服电话:
0311-85395669
指标

高炉炉顶不同形式布料溜槽炉料分布计算结果

来源:2018年第六届炼铁对标、节能降本及新技术研讨会论文集|浏览:|评论:0条   [收藏] [评论]

高炉炉顶不同形式布料溜槽炉料分布计算结果司俊朝 魏航宇(河北钢铁集团邯钢公司炼铁部 邯郸 056000) 摘 要:炉顶布料制度是高炉最重要的制度,而布料溜槽的形式对布料存在关键性影响,…

高炉炉顶不同形式布料溜槽炉料分布计算结果

司俊朝  魏航宇

(河北钢铁集团邯钢公司炼铁部  邯郸  056000

 要:炉顶布料制度是高炉最重要的制度,而布料溜槽的形式对布料存在关键性影响,目前溜槽形式有横截面半圆形溜槽和方形,本文通过对两种溜槽的进行了对比,通过matlab软件模拟计算找出了不同溜槽的布料特点,为溜槽的使用和角度选择提供了依据。

关键词:高炉,溜槽,matlab

1 概述

邯钢炼铁部五高炉有效容积为2000m3高炉,2005年由1260m3高炉改造而成,采用全皮带上料,炉顶并罐式料罐。并罐布料偏析是由于炉料进入料罐后流动产生粒级偏析,布料过程中料流在溜槽上偏析布引起,主要表现在炉料在料面上的落点轨迹和圆周方向的料流流量[1],并罐形式炉顶布料由于料罐中心线与产生较大偏析,由于并列料罐的布置,炉料从料流阀流出后下落到中心喉管,在中心喉管偏行,这样在溜槽一圈的旋转中,炉料落到溜槽上的速度和落点都不同,这就导致炉料在料面上的质量分布不均匀[2],但由于布料过程中产生一定的布料偏析,特别是由于半圆形圆周摩擦力较小,导致炉料布料落点范围较宽,休风后发现整个溜槽中部出现炉料摩擦的痕迹,说明整个布料过程炉料已经出现脱离溜槽布料控制的情况,高炉后期通过对矿批和焦批的调整后取得了一定的效果,但矿批和焦批有一定的局限性。后设计使用方溜槽,方形溜槽由于边缘直角形,边缘力较大,可以将炉料很好控制,落点较集中,但由于前期没有使用过方溜槽,布料角度和矿批等都需要从新衡量,因此对两种溜槽进行了模型计算。

2.布料溜槽模拟计算

2.1圆形溜槽布料情况

圆形布料溜槽示意图及相关受力分析见图1:



2.1.1圆形溜槽布料数值设定

由于炉料落点主要受离开溜槽时的速度影响,因此对溜槽尾端炉料速度进行分解研究,可将炉料离开溜槽后速度分为x,y,z三个方向上的抛物自由落体运动,其中的vx,、vy、vz;设定料线为H,Q为炉料流量kg/s,S为料流开口面积m2,ρ为密度kg/m3,高炉布料溜槽转速 圈/7.5s,中心喉管高度h为2m,a为旋转溜槽倾角,λ为消减系数。;α(°)为旋转溜槽倾角; L0 (m)为溜槽有效长度;ω(rad/s)为溜槽旋转角速度;μ为溜槽对炉料的摩擦系数。高炉布料相关情况见表1。

1 高炉布料情况

开度(°

圈数(圈)

Ρkg/m3

批重(kg

Sm2

Qkg/s

30.7

11

1750

54500

8.67889

37159

29.7

16

580

13837

8.39619

6486

2.1.2圆形布料溜布矿模型计算

圆形布料溜槽布矿模型计算公式及相关参数:


圆溜槽计算时最高点和最低点的炉料所围成区域组成炉料布料区域,5高炉目前使用圆溜槽半径0.97m,计算横截面积0.3695m2,由于炉料面积0.0629 m2,如炉料堆积过程中两端呈直角,则炉料堆积面积为0.0671 m2,与炉料横截面积较为接近,因此本模型取炉料两端为直角。通过角速度w和溜槽长度计算出最高点位于0.44m,最低点处于溜槽横截面中心,本次计算忽略溜槽本身厚度影响,计算如表1,通过MATLAB模拟计算51和50度角时最远位置布料、最近位置和料宽见表2:

2 圆溜槽布矿情况

角度

51

50

最远点距炉墙

0.0384m

0.1144m

最近点距炉墙

0.3816m

0.4686m

范围

0.3432m

0.3542m

2.1.2圆形布料溜槽布焦模型计算

圆形布料溜布焦模型计算公式及相关参数:


通过MATLAB模拟计算5150度角时最远位置布料、最近位置和料宽见表3

3圆溜槽布焦情况

角度

51

50

最远点

0.0866m

0.1592m

最近点

0.4246m

0.5066m

范围

0.338m

0.3474m

2.2 方形溜槽布料情况

方形布料溜槽示意图及相关受力分析见图2

2.2.1方形溜槽布料数值设定

设定料线为H,Q为炉料流量kg/s,S为料流开口面积m2,ρ为密度kg/m3,高炉布料溜槽转速 圈/7.5s,中心喉管高度h为2m,a为旋转溜槽倾角,λ为消减系数。;α(°)为旋转溜槽倾角; L0 (m)为溜槽有效长度;ω(rad/s)为溜槽旋转角速度;μ为溜槽对炉料的摩擦系数。

开度(°

圈数(圈)

Ρkg/m3

批重(kg

Sm2

Qkg/s

30.7

11

1750

54500

8.67889

37159.09

29.7

16

580

13837

8.39619

6486.094

2.2.2方形布料溜布矿模型计算

方形布料溜布焦模型计算公式及相关参数:


方溜槽计算时最高点和最低点的炉料所围成区域组成炉料布料区域,5高炉目前备用方溜槽长3m,内壁宽0.97m,外壁宽1.2m,高0.67m,其中下部壁厚0.14m, 计算横截面积0.35141m2,由于炉料面积0.0629 m2,与炉料横截面积较为接近,因此本模型取炉料两端为直角。计算出最高点位于0.35m,最低点处于溜槽横截面中心,通过MATLAB模拟计算51和50度角时最远位置布料、最近位置和料宽见表4:

4  方溜槽布矿情况

角度

51

50

最远点

0.1072m

0.1844m

最近点

0.3816m

0.4686m

范围

0.2744m

0.2842m

2.2.3方形布料溜布焦模型计算

方形布料溜布焦模型计算公式及相关参数


3 不同布料溜槽模型计算结果对比

3.1 布矿情模型计算结果对比

圆形溜槽布矿模型模拟轨迹如图3,方形溜槽布矿模型模拟轨迹如图4

从图3和图4看51度角调度最外炉料落点圆形溜槽较方形溜槽靠近炉墙,布料角度相差1度圆溜槽炉料分布相差小1.2mm,随着布料角度的缩小,两种溜槽的布料宽度都有所增加,结果如下:

1)圆溜槽布料角度相差1度炉料分布相差76mm,方溜槽布料角度相差1度炉料分布相差77.2mm;

2)圆溜槽最远点较方溜槽最远点远69mm;

3)圆溜槽随布料角度递减过程中布料带宽有所增加,1度角增加约11mm;

4)方溜槽随布料角度递减过程中布料带宽有所增加,1度角增加约9.8mm;

3.2布焦情模型计算结果对比

圆形溜槽布焦模型模拟轨迹如图5,方形溜槽布焦模型模拟轨迹如图6;

从图5和图6看51度角调度最外炉料落点圆形溜槽较方形溜槽靠近炉墙,布料角度相差1度圆溜槽炉料分布相差小1.8mm,随着布料角度的缩小,两种溜槽的布料宽度都有所增加,结果如下:

1)圆溜槽布料角度相差1度炉料分布相差72.6mm,方溜槽布料角度相差1度炉料分布相差74.4mm,

2)圆溜槽最远点较方溜槽最远点远67mm;

3)圆溜槽随布料角度递减过程中布料带宽有所增加,1度角增加约9.4mm;

4)方溜槽随布料角度递减过程中布料带宽有所增加,1度角增加约7.6mm;

4 结论

1)圆形溜槽布料同样角度炉料落点较方形溜槽距炉墙更近;布焦炭圆溜槽最远点较方溜槽最远点远67mm;布矿圆溜槽最远点较方溜槽最远点远69mm

2) 圆形溜槽布料角度相差1度较方形溜槽布料宽度小,布焦角度相差1度相差小1.8mm,布矿角度相差1度相差小1.2mm;

3)无论方形溜槽还是圆形溜槽,随着布料角度递减过程,炉料落点宽度都有所增加,圆形溜槽增加幅度更大,圆形溜槽布矿随1度角增加约11mm、布焦增加9.4mm,方形溜槽布矿随1度角增加约9.8mm、布焦增加7.6mm;

参考文献

[1] 并罐式无钟炉顶布料蛇形偏料的研究[J]. 杜鹏宇,程树森,滕召杰.  北京科技大学学报. 2011(04)

[2] 无钟并罐式高炉周向不均匀布料的研究[J]. 任廷志.  钢铁研究学报. 1999(03)


上一篇:连铸保护渣中氟化物的污染及防治
下一篇:板坯连铸开浇非稳态过程控制研究与优化
分享到:
[腾讯]
关键字:无

冶金技术排行榜